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properties in subglacial sediments across the PIG catchment32, 33,
we conclude that much of the variability in the basal traction
must be related to unresolved bed topography.

Discussion
Many state-of-the-art Antarctic ice-sheet models use the ‘Bed-
map2’ basal topography23 or derivations thereof40. This topo-
graphy was derived from unevenly distributed ice-bed elevation
measurements spaced between tracks by many ice thicknesses,
and interpolated onto a regular 5-km grid and, although supplied
at 1-km resolution, only 17% of 5-km cells in Bedmap2 contained
measurements23. Thus, Bedmap2 contains limited information on
bed roughness, even for length scales >10 times the ice
thickness. Our data thus show that significant, and potentially
influential, bed topography occurs throughout PIG (and
presumably other ice streams) on length scales of ~5–50% of the
ice thickness.

The issue of the degree to which basal traction arises from
friction or form drag becomes more significant when models are
used for projection. To achieve projections, most models are run
from the initialised condition with an unchanging field of traction
coefficient varying according to a heuristic parameterisation of
bed rheology, ranging from linear viscous to plastic. The choice of
this parameterisation has a substantial impact on the timing and
magnitude of ice loss12. However, while basal friction is likely to
be a highly dynamic field, evolving as water melts, flows and
refreezes, and subglacial till is mobilised and refrozen41, form
drag is likely to be considerably more static, defined primarily by
the size and orientation of bedrock undulations and protuber-
ances. Recent changes in PIG already indicate the potential
importance of this factor, in as much as satellite data have shown
that the rate of upstream propagation of ice thinning on PIG
varies considerably between the tributaries, the southerly tribu-
taries with rough beds showing 2–3 times slower propagation
than the smoother tributaries6 (Table 1; Fig. 3b). In summary, the

new data show that the basal traction (hence ice flow) of Pine
Island Glacier is much more heavily influenced by form drag, i.e.,
as opposed to basal friction, than has previously been shown to be
the case.

Our data provide insight into the topographic diversity that
exists even within one subglacial basin, let alone the entire ice
sheet, which cannot adequately be represented in ice-sheet
models. Given that the basal boundary is already identified as a
major source of uncertainty in model projections17, 21, they
expose an urgent need to develop techniques for efficient mea-
surement or more intelligent indirect estimation of short-
wavelength subglacial topography beneath other vulnerable ice
streams. One prospect for recovering short-wavelength subglacial
topography may be provided by airborne swath–radar techniques
that are currently under development42. Until such independent
evaluation of form drag and basal friction is integrated into
models, the current generation of ice-sheet models will be
hampered in establishing projections of ice loss and sea-level rise.
As an immediate step, the new data now make it possible to
run data-informed experiments to develop adequate
parameterisations of short-wave form drag on large outlet glaciers
and ice streams, and in doing so expand our theoretical
knowledge of its effects on ice flow, building upon existing
idealised treatments43, 44.

The issues that we highlight will be particularly acute in PIG’s
neighbour, Thwaites Glacier, which holds the potential for rapid
and irreversible retreat, and a considerable contribution to sea-
level rise8. Thwaites Glacier’s lower reaches appear to exhibit a
similarly high basal traction to the roughest of our patches11, 37,
and may thus contain a similarly dramatic basal topography, but
apparently already show a more rapid inland propagation of
thinning than even the smoothest tributaries on PIG6. Here, the
significance of the interplays between basal topography, which
may be sufficient to pause the retreat of the grounding line, and
the static and dynamic contributions to basal traction, have yet to
be explored.
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Fig. 2 Comparison of surveyed beds beneath Pine Island Glacier with those used in ice-sheet modelling and imaged in selected palaeo-ice-streams. a Bed
topography at site iSTARt1 (location in Fig. 1) from previous knowledge23. b New bed topography (alternative perspective view to Fig. 1e). c Analogous
subsample of bed topography from outer Pine Island Bay imaged from data presented in ref. 27; patch location marked on Fig. 1b. d Bed topography at site
iSTARt9 (location in Fig. 1) from previous knowledge23. e New bed topography (alternative perspective view to Fig. 1l). f Analogous subsample of bed
topography from inner Pine Island Bay imaged from data presented in ref. 29; patch location marked in Fig. 1b
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High-resolution radar measurements of bed topography

The ‘correct’ friction law and coefficients depend on the resolution of your model 
(the friction law is to describe unresolved processes!) 
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Glacier Flow

Surface time lapse: https://youtu.be/1ai9Q27J2vc

Bed time lapse: https://youtu.be/njTjfJcAsBg
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Glacier flow: strain rate components

Alley et al., 2018
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Coupling different flow regimes



Sliding Laws

Slides from Ian Hewitt’s presentation at the Karthaus Summer School.

• The “Correct” sliding law for a 
particular application requires 
knowledge of the processes at 
play.

• These are fundamentally 
parameterizations, meaning 
that they are simplified 
representations of unresolved 
processes.



Hard-bedded sliding

A film of water exists between ice and the underlying bedrock (a few microns thick).

Microscopically, free slip is allowed (i.e.                 ).

Macroscopic resistance comes from the roughness of the bedrock (                     ).
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Flow over roughness occurs via regelation and viscous (plastic) deformation.

Weertman 1957
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Dimensional analysis, using Glen’s flow law
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Ŝ

hr

⇧r

e(N) =

a

⇧

R =
a

⇧

Ureg ⇥
�

k�

⇥iLa

⇥
⇤b
R2

Uvis ⇥
�
aA

2n

⇥
⇤nb
R2n

⇤b = R2
⇤
CregaUb + Cvisa

�1/nU1/n
b

⌅

a ⇤ U�(n�1)/(n+1)
b

⇤b ⇤ R2 U2/(n+1)

⌅Ŝ
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Q̂ = �K̂Ŝ�Ĝ1/2

3

Nu

N ⇤ G7/15Q1/15

N > Ñ

N < Ñ
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Dimensional analysis, using Glen’s flow law
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Ŝ

hr

⇧r

e(N) =

a

⇧

R =
a

⇧

Ureg ⇥
�

k�

⇥iLa

⇥
⇤b
R2

Uvis ⇥
�
aA

2n

⇥
⇤nb
R2n

⇤b = R2
⇤
CregaUb + Cvisa

�1/nU1/n
b

⌅

a ⇤ U�(n�1)/(n+1)
b

⇤b ⇤ R2 U2/(n+1)

⌅Ŝ
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Regelation Viscous flow
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Stokes flow

Heat equation
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A more sophisticated approach to (Newtonian) viscous flow and regelation

via Fourier transform
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SLIDING MOTION OF GLACIERS 679' 

melting. This process of melting and refreezing is here called 'regelation,' and 
its contribution to the sliding process is called 'regelation sliding' (the use of 
the term 'regelation' in this context is discussed by Kamb and LaChapelle 
[1964, p. 160]). (2) The ice responds plastically to the increased normal pres- 
sure on the upstream faces, arching upward at these points and thereby permit- 
ting the ice to move forward; correspondingly, it closes down behind the irreg- 
ularities, in response to the reduced normal pressure on the downstream faces. 
m• • ..... * '•"*:^• ̂ f this process is called 'plastic-flow sliding.' The plastic- 
flow response of the ice is assumed to be that of a generalized Newtonian fluid, 
rather than plasticity in the strict sense. 

The sliding process defined by these specifications is illustrated schematically 
in Figure 1. We seek a relationship between the sliding velocity v and the drag 

Surface z = Zo- FX, y) '"•,•,,,•//' Regelation 
BEDROCK layer 

Fig. la. Schematic representation of ice sliding with velocity v over an 
arbitrary bedrock topographic surface z -- Zo (x, y). Coordinate system 
is as shown, with the x axis in the sliding direction. A cross section of the 
bed in the y direction (perpendicular to the direction of sliding) would 
be ge{erally similar to the x cross section shown. The regelation layer 
consists of ice formed by the refreezing of v•ater that has migrated along 
the ice-rock contact from areas of high normal pressure. Warping of the 
ice flow vectors near the bedrock surface is an indication of plastic de- 

formation taking place in the ice. 

stress or basal shear stress r, as a function of bed roughness, appropriately 
defined. For this purpose the bedrock topography zo(x, y) is Fourier ana- 
lyzed, and the regelation and plastic-flow contributions to the sliding motion 
are calculated separately for the individual Fourier components. This analysis 
can be carried out rigorously wheil the amplitudes of the Fourier components 
are small compared to their wavelengths, that is, when the roughness is low 
enough that the heat and plastic-flow problems can be treated as problems in 
a half-space. For the plastic-flow problem, a rigorous analysis is possible in the 
case of linear rheology (Newtonian viscosity), and a practical approximation 
to nonlinearity can'be d•v•loped frbn•.• this,: as a starting point. •T'he results can 
then be appropriately combined to obtain r as a function of v for sliding under 
the simultaneous operation of regelation and plastic flow. In making this com- 
bination, there emerges a eharaeteris•tie length .X•, here called the transition 

Kamb 1970

Nye-Kamb theory Nye 1969, Kamb 1970
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Slides from Ian Hewitt’s presentation at the Karthaus Summer School.
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N < Ñ
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Viscous flow and regelation

Combining these two mechanisms:

There is a ‘controlling obstacle size’ for which stress / speed cross over:

⌥h

⌥t
+⇤ · q = m

�ThT
⌥⌃

⌥t
= ⇤ · (KThT⇤⌃) +m

�T
⌥p

⌥t
= KT⇤2p

�T
⌥p

⌥t
= KT⇤2p

�T

a

�

R =
a

�

Ureg �
�

k⇥

⌅iLa

⇥
⇧b
R2

Uvis �
�
aA

2n

⇥
⇧nb
R2n

⇧b = R2
⇤
CregaUb + Cvisa

�1/nU1/n
b

⌅

a ⇥ U�(n�1)/(n+1)
b

⇧b ⇥ R2 U2/(n+1)
b

⇤ =
a

�

UR �
�

kC

⌅iLa

⇥
⇧b
⇤2

UV �
�
aA

2n

⇥
⇧nb
⇤2n

⇧b = ⇤2
⇤
RraUb +Rva

�1/nU1/n
b

⌅

a ⇥ U�(n�1)/(n+1)
b

⇧b = ⇤2 R U2/(n+1)
b

Rr =
⌅iL

kC

Rv =

�
1

2A

⇥1/n

4

Nu

N ⇤ G7/15Q1/15

N > Ñ
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Weertman sliding law
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Sliding with cavitation Lliboutry 1968

Cavitation occurs when pressure on downstream face of bumps reduces to critical level
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Cavitation Experiments (Zoet and Iverson 2015, 2016)

hard beds, stepped beds should be considered as one idealized end-member of a continuum of forms, with
sinusoidal beds as the other end-member.

A stepped bed with linear stoss surfaces is thought to result in a relation between sliding speed and drag that
is distinct from that of a sinusoidal bed. Iken [1981] considered a stepped bed with water-filled cavities. She
demonstrated that to sustain stress equilibrium for a given ice overburden pressure, water pressure could not
exceed a threshold value dependent on the adverse slope of stoss surfaces. The corresponding upper limit of
shear stress on the bed, for a given effective pressure and adverse bed slope, is sometimes called Iken’s
bound [e.g., Schoof, 2005]. This bound is assumed to be independent of sliding speed and cavity size because
adverse bed slopes are uniform: the smaller contact areas between ice and stoss surfaces when cavities are
large are exactly compensated, owing to the uniform slope, by the larger normal forces over these areas.
Thus, once cavities develop on a stepped bed, rate-independent slip resistance that is dependent on effective
pressure is expected (equivalent to “Coulomb friction” [e.g., Schoof, 2010]). In contrast, for the case of a sinusoi-
dal bed themaximumadverse slope in contactwith ice is smaller for progressively larger cavities, provided that
they extend beyond the inflection points of adverse slopes, resulting in a reduction in drag at progressively
higher speeds—the aforementioned rate weakening. Importantly, for both bed geometries, the maximum
drag is set by the limit-equilibrium condition that depends on the adverse slopes of steps and the effective
pressure and is independent of the ice rheology.

Herein we report the results of the first experimental study of ice slip over a stepped bed with leeward
cavities. We find that although rate weakening for a stepped bed is less than that of a sinusoidal bed, it is still,
contrary to expectation, significant. After exploring and discounting possible differences between the theory
and experiments that might cause rate weakening when rate-independent slip is expected, we provide an
explanation for how bed basal shear stress may attain values that are less than Iken’s bound and thus
decrease with sliding speed.

2. Methods

The device and protocol for these experiments were the same as for our experiments with a sinusoidal bed
[Zoet and Iverson, 2015; Iverson and Zoet, 2015]. The device rotates a large ring of ice (0.9m outside diameter,
0.2m width, approximately 0.21m thick) across a rigid bed under a constant effective pressure (Figure 2). The
ring of ice, held in an aluminum chamber of U-shaped cross section, is gripped at its top by a toothed platen
made of Delrin®, a polyoxymethylene, high-density plastic of low thermal conductivity that prevents slip of
ice across the platen as it rotates. Rotation thus causes the bottom of the ice ring to slip over the bed. The
device can accommodate unlimited slip displacement. The ice is held at its pressure-melting temperature
by a glycol/water mixture that circulates around the ice chamber and regulates its temperature with a

Figure 2. Device schematic used for sliding experiments. The inset details the sample chamber containing the stepped
bed. An annular plate with teeth grips the ice ring at its upper surface and drags it across the bed and along smooth
walls that confine the ice ring laterally.
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the stepped bed is absent because tests were not conducted at sufficiently low sliding speeds to prevent
cavity growth, owing to the vertical lee surfaces of bed steps that cause cavities to form at very low speeds.
More importantly, comparison of the two sets of results indicates that about half of the rate weakening
observed for a sinusoidal bed may be attributable to the dependence of be on sliding speed, whereas the
remaining decrease may reflect the progressively smaller adverse slopes of ice-bed contact areas, as cavities
increase their sizes with increasing sliding speed [Schoof, 2005; Zoet and Iverson, 2015]. A reasonable infer-
ence, therefore, based on the results with the stepped bed, is that some of the rate weakening in the
sinusoidal-bed case was due to longitudinal stress gradients related to bridging effects between cavities
and ice-bed contact zones.

The granular materials used to simulate fault gouge regularly demonstrate rate-weakening slip that can be
parameterized within the context of rate-and-state friction [e.g., Scholz, 2002]. Empirically derived rate-and-
state friction rules are commonly used to characterize frictional slip on faults [Dieterich, 1979; Ruina, 1983]
and in some instances glaciers [Zoet et al., 2013b]. Although frictional slip of faults and slip of hard-bedded gla-
ciers both can exhibit rate weakening, disparate processes are responsible for theweakening. Rate weakening
during slip of glaciers over hard beds results from ice-bed separation, whereas rateweakening during frictional
fault slip requires an adjustment between asperity contacts on rock surfaces [Scholz, 2002].

5. Implications

These results, when considered with our previous experimental results [Zoet and Iverson, 2015] (Figure 6),
indicate that for the two bounding geometries of adverse slopes, hard beds may become increasingly
“slippery” as sliding speed increases. How important is this effect likely to be for the more complicated hard
beds of real glaciers? Various complexities are not replicated by the experiments: regelation, drag caused by
debris in ice [Hallet, 1981; Cohen et al., 2005], transient freezing on parts of the bed [Robin, 1976], and the vari-
able sizes and shapes of obstacles, including their three-dimensionality. For the case in which drag associated
with debris-bed friction is minor, considering the last of these is probably the most important for assessing
rate-weakening drag. Schoof [2005] theoretically considered two-dimensional, arbitrary bed geometries
and demonstrated the rate-weakening effect. Others have noted that a population of large obstacles could
eliminate rate weakening [e.g., Fowler, 1987; Lliboutry, 1987], but this conjecture may be unrealistic because
these large obstacles would need to have steeper adverse slopes than obstacles with cavities [Schoof, 2005].

Figure 7. Ice deformation. Along-flowviewof the ice ringat the endof an experiment, showingdisplacementof beads (pink)
that were in a vertical column prior to sliding. The upper surface was gripped and displaced to the right (as denoted by the
arrow) as ice slid across the bed. Note that left side of the scale is in centimeters. Nonpink beads were used to track sliding
displacement andwere not initially in vertical columns. Clear ice in the lowermost 40%of the ice ring reflects recrystallization
during ice deformation that purged air bubbles from the ice.
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increasing sliding speed. At the ends of experiments cavity
geometry is measured directly and predicted well using the
ice/bed separation theory of Kamb (1987) (Fig. 3),as
adapted for an appropriate power-law ice rheology. This
theory,therefore,provides the basis for estimating cavity
shapes and positions in Figure 3 from measured volumes of
cavities (see Appendix).

Measured values of steady shear stress (bed-parallel drag
force divided by bed area) supported by the sinusoidal bed
demonstrate a double-valued drag response as a function of
sliding speed (Fig. 4). At low sliding speeds (<7.3ma–1)
cavities are small (Fig. 3),and drag increases with speed. At
progressively larger steady speeds (up to 350ma–1) and
cavity sizes,there is a marked decrease in drag,of up to
50% if cavities cover ⇠93% of the bed (Fig. 3). Cavity size at
the speed at which drag peaks (Fig. 3) is close to the threshold size at which Iken’s bound is predicted to start

declining with further increases in speed (Schoof,2005).
Background drag measured with a flat bed is small (⇠9 kPa)
and independent of sliding speed (Fig. 4).

Highly deformed ice near the bed exhibits fabrics with
preferentially aligned c-axes,as expected for ice at the
pressure-melting temperature subjected to strain approxi-
mating simple shear (Cuffey and Paterson,2010) (Fig. 5).
The c-axis orientations have a unimodal distribution around
the vector normal to the roughly horizontal shear plane.
Initially c-axes were nearly randomly oriented and likely
developed preferred orientation at low strains (<1) (Iverson
and Petersen,2011). The grains have an average diameter of
7mm and have undergone extensive recrystallization,as
demonstrated by their polygonal shape and triple-point
junctions (Alley and others,1995). Thus,although the
experimental ice is synthetic,at strains required for steady-
state sliding ice has begun tertiary creep and is structurally
similar to ice near glacier beds.

DISCUSSION
Theory
Although many theories of glacier sliding address ice/bed
separation (Lliboutry,1968,1979,1987;Fowler,1986,

Fig. 3. Cavities at the bed due to sliding. Longitudinal profiles of
cavities at the ice-ring center line at sliding speeds of 2.6,7.25 and
290ma–1 (gray lines),under a total vertical stress of 500 kPa and
atmospheric pressure in cavities. Cavity geometry at 290ma–1 was
both measured directly (crosses) and fitted (gray line) using the
theory of Kamb (1987),as described in the Appendix. Error bars
indicate ⌃1� of variability based on measurements of multiple
cavities. Note the exaggerated vertical scale.

Fig. 4. Drag on the bed. Mean steady shear stress as a function of
sliding speed for a sinusoidal bed and a flat bed. Error bars indicate
⌃1� from the mean,once a time-averaged steady stress or speed
was reached (e.g. Fig. 2). The speeds (2.6,7.25 and 290ma–1)
correspond to the cavity geometries of Figure 3. The solid line is the
sum of the shear stress estimated using a theory of sliding in the
presence of cavities (Lliboutry,1968,1979) and the background
shear stress measured with the flat bed.

Fig. 5. Ice crystal fabric. (a) A horizontal thin section of ice from an
experiment,under cross-polarized lenses. Ice was collected from
⇠1mm above the cavity ceiling after a total sliding displacement at
the ice-ring center line of 6.51m. The grid squares are 10mm.
(b) The c-axis orientations of 150 crystals on a lower-hemisphere,
equal-area plot,with a contour interval of 20�. The c-axes are
centered on the vector normal to the shear plane. Both panels are
oriented with respect to the sense of shear indicated.
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increasing sliding speed. At the ends of experiments cavity
geometry is measured directly and predicted well using the
ice/bed separation theory of Kamb (1987) (Fig. 3),as
adapted for an appropriate power-law ice rheology. This
theory,therefore,provides the basis for estimating cavity
shapes and positions in Figure 3 from measured volumes of
cavities (see Appendix).

Measured values of steady shear stress (bed-parallel drag
force divided by bed area) supported by the sinusoidal bed
demonstrate a double-valued drag response as a function of
sliding speed (Fig. 4). At low sliding speeds (<7.3ma–1)
cavities are small (Fig. 3),and drag increases with speed. At
progressively larger steady speeds (up to 350ma–1) and
cavity sizes,there is a marked decrease in drag,of up to
50% if cavities cover ⇠93% of the bed (Fig. 3). Cavity size at
the speed at which drag peaks (Fig. 3) is close to the threshold size at which Iken’s bound is predicted to start

declining with further increases in speed (Schoof,2005).
Background drag measured with a flat bed is small (⇠9 kPa)
and independent of sliding speed (Fig. 4).

Highly deformed ice near the bed exhibits fabrics with
preferentially aligned c-axes,as expected for ice at the
pressure-melting temperature subjected to strain approxi-
mating simple shear (Cuffey and Paterson,2010) (Fig. 5).
The c-axis orientations have a unimodal distribution around
the vector normal to the roughly horizontal shear plane.
Initially c-axes were nearly randomly oriented and likely
developed preferred orientation at low strains (<1) (Iverson
and Petersen,2011). The grains have an average diameter of
7mm and have undergone extensive recrystallization,as
demonstrated by their polygonal shape and triple-point
junctions (Alley and others,1995). Thus,although the
experimental ice is synthetic,at strains required for steady-
state sliding ice has begun tertiary creep and is structurally
similar to ice near glacier beds.

DISCUSSION
Theory
Although many theories of glacier sliding address ice/bed
separation (Lliboutry,1968,1979,1987;Fowler,1986,

Fig. 3. Cavities at the bed due to sliding. Longitudinal profiles of
cavities at the ice-ring center line at sliding speeds of 2.6,7.25 and
290ma–1 (gray lines),under a total vertical stress of 500 kPa and
atmospheric pressure in cavities. Cavity geometry at 290ma–1 was
both measured directly (crosses) and fitted (gray line) using the
theory of Kamb (1987),as described in the Appendix. Error bars
indicate ⌃1� of variability based on measurements of multiple
cavities. Note the exaggerated vertical scale.

Fig. 4. Drag on the bed. Mean steady shear stress as a function of
sliding speed for a sinusoidal bed and a flat bed. Error bars indicate
⌃1� from the mean,once a time-averaged steady stress or speed
was reached (e.g. Fig. 2). The speeds (2.6,7.25 and 290ma–1)
correspond to the cavity geometries of Figure 3. The solid line is the
sum of the shear stress estimated using a theory of sliding in the
presence of cavities (Lliboutry,1968,1979) and the background
shear stress measured with the flat bed.

Fig. 5. Ice crystal fabric. (a) A horizontal thin section of ice from an
experiment,under cross-polarized lenses. Ice was collected from
⇠1mm above the cavity ceiling after a total sliding displacement at
the ice-ring center line of 6.51m. The grid squares are 10mm.
(b) The c-axis orientations of 150 crystals on a lower-hemisphere,
equal-area plot,with a contour interval of 20�. The c-axes are
centered on the vector normal to the shear plane. Both panels are
oriented with respect to the sense of shear indicated.
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Lliboutry suggested the sliding relationship was non-monotonic - a ‘multivalued’ sliding law

Sliding with cavitation

Iken suggested there should be a maximum shear stress
associated with cavities ‘drowning’ the bed roughness.

Lliboutry 1968, Iken 1981,1983
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Sliding with cavitation
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Ẑb(k) = lim
M⇤⌅

1

M

����
⌅ M

�M

Zb(x)e
ikx dx

����

⌥b = Nf

⇥
Ub

N

⇤

⌥b = Nf

⇥
Ub

Nn

⇤

Ub = C⌥ pbN
q

0 < p, q < 1

⌥b = �2Ub

�2(x, y)

p = q = 1
3

⌥b
N

= µ

⇥
Ub

Ub + ⇤ANn

⇤1/n

⌥b = µN

⇥
Ub

Ub + ⇤ANn

⇤1/n

⌥b
N

= f(�)

7

Fowler suggests cavities never really ‘drown’ bed - stress is just transferred to larger bumps
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Ẑb(k) = lim
M⇤⌅

1

M

����
⌅ M

�M

Zb(x)e
ikx dx

����

⌥b = Nf

⇥
Ub

N

⇤

⌥b = Nf

⇥
Ub

Nn

⇤

⌥b/N

Ub/N
n

⌥b = CUp
bN

q

0 < p, q < 1

⌥b = �2Ub

�2(x, y)

p = q = 1
3

⌥b
N

= µ

⇥
Ub

Ub + ⇤ANn

⇤1/n

⌥b = µN

⇥
Ub

Ub + ⇤ANn

⇤1/n

7

‘Generalized’ Weertman law

Some experimental support for this law with 
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(Budd et al 1979)

Schoof suggests an alternative with a maximum shear stress
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Fowler 1986, Schoof 2005, Gagliardini et al 2007

Regularised ‘Coulomb’ law
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Soft-bedded sliding

Subglacial till has a complicated rheology (more complicated than ice)

Boulton & Hindmarsh 1987, Kamb 1991, Tulaczyk 2000, Clarke 2005

Laboratory experiments suggest plastic behaviour,  i.e. no deformation beneath a yield stress
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effective stress

⌥f = c0 +N tan 

⌥f = c0 + ⌃e tan 

⌦̇ = A(⌥ � ⌥f )
a⌃b

e

⌦̇ = A⌥a⌃b
e

⌦̇ = A exp(�⌥/⌥f )

� ⇤ 1

⌃e = P � pw ⇥ N

⌃e = ps � pw

⌥ = ⌥f

⌥b = ⇥2Ub

⇥2(x, y)

p = q = 1
3

⌥b
N

= µ

�
Ub

Ub + ⌅ANn

⇥1/n

⌥b = µN

�
Ub

Ub + ⌅ANn

⇥1/n

⌥b
N

= f(�)

� =
Ub

⌅ANn

f(�) = µ

�
�

�0 + �

⇥1/n

f(�) = µq

�
�

�q
0 + �q

⇥1/n

⌥b
N

= µ

�
�

�0 + �

⇥1/n

⌥b
N

= µq

�
�

�q
0 + �q

⇥1/n

M̂ = �1� ⇧wcw⇤

⇧wL
Q̂Ĝ

5

tan ⇥ 0.44
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- Visco-plastic model
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5

Stress must be transferred laterally to sticky spots 

No ‘local’ sliding law in this case

When yield stress exceeded, there are two main possibilities:
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- Perfect plasticity

Slides from Ian Hewitt’s presentation at the Karthaus Summer School.
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Hard bedrock

Soft sediments

⌥S

⌥t
=

1

⇤iL

⇥
kcS

�

����
⌥⇧

⌥s

����
⇥+1

+ lrkh
�

����
⌥⇧

⌥s

����
⇥+1

⇤
� K̂S|N |n�1N

Q = �kcS
�|�|⇥�1�

Q = �kcS
�

����
⌥⇧

⌥s

����
⇥�1 ⌥⇧

⌥s

Q = �kcS
�|⇤s⇧|⇥�1⇤s⇧

⌥S

⌥t
=

kcS�|⇤s⇧|⇥+1

⇤iL
+ lr

kh�|⇤⇧|⇥+1

⇤iL
� K̂S|N |n�1N

zs

zb

⌃̇ = A⌅n

A(T ) n

0 = �⇤p+⇤ · �

⇥̇ = A(T )⌅n�1�

⇤ · u = 0

ub = f(x, ⌅b, N)� b

ub = f � b

� b = f ub

� b = � ub

⌥T

⌥t
+ u ·⇤T = ⇥⇤2T

pi ⇥ ⇤ig(zs � zb)

5

⌥S

⌥t
=

1

⇤iL

⇥
kcS

�

����
⌥⇧

⌥s

����
⇥+1

+ lrkh
�

����
⌥⇧

⌥s

����
⇥+1

⇤
� K̂S|N |n�1N

Q = �kcS
�|�|⇥�1�

Q = �kcS
�

����
⌥⇧

⌥s

����
⇥�1 ⌥⇧

⌥s

Q = �kcS
�|⇤s⇧|⇥�1⇤s⇧

⌥S

⌥t
=

kcS�|⇤s⇧|⇥+1

⇤iL
+ lr

kh�|⇤⇧|⇥+1

⇤iL
� K̂S|N |n�1N

zs

zb

⌃̇ = A⌅n

A(T ) n

0 = �⇤p+⇤ · �

⇥̇ = A(T )⌅n�1�

⇤ · u = 0

ub = f(x, ⌅b, N)� b

ub = f � b

� b = f ub

� b = � ub

⌥T

⌥t
+ u ·⇤T = ⇥⇤2T

pi ⇥ ⇤ig(zs � zb)

5

⌥S

⌥t
=

1

⇤iL

⇥
kcS

�

����
⌥⇧

⌥s

����
⇥+1

+ lrkh
�

����
⌥⇧

⌥s

����
⇥+1

⇤
� K̂S|N |n�1N

Q = �kcS
�|�|⇥�1�

Q = �kcS
�

����
⌥⇧

⌥s

����
⇥�1 ⌥⇧

⌥s

Q = �kcS
�|⇤s⇧|⇥�1⇤s⇧

⌥S

⌥t
=

kcS�|⇤s⇧|⇥+1

⇤iL
+ lr

kh�|⇤⇧|⇥+1

⇤iL
� K̂S|N |n�1N

zs

zb

⌃̇ = A⌅n

A(T ) n

0 = �⇤p+⇤ · �

⇥̇ = A(T )⌅n�1�

⇤ · u = 0

ub = f(x, ⌅b, N)� b

ub = f � b

� b = f ub

� b = � ub

⌥T

⌥t
+ u ·⇤T = ⇥⇤2T

pi ⇥ ⇤ig(zs � zb)

5

⇧b = f

�
Ub

Nn

⇥

⇧b = RU1/m
b

⇧b = RU1/n
b

⇧b = CU1/3
b N1/3

⇧b = CUp
bN

q

⇧b = µN

⇧b = µN

�
Ub

Ub + ⇤Nn

⇥1/n

⌧ b ⇥ �⌅igH⇤s

q = �Kh3⇤⌃

⌥h

⌥t
+⇤ · q = m+ r

⌥h

⌥t
=

⌅w
⌅i

m+
hr

lr
Ub � ⇥AhNn

h = he(N)

S N ⌃ ⌃0 h b s H

A n ⇥ ⇥c hr lr ⌅w ⌅i ub r R L K Kc

Q = KcS
4/3|s ·⇤⌃|1/2

⌥S

⌥t
+

⌥Q

⌥s
=

Q

⌅wL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|] +R

⌥S

⌥t
=

Q

⌅iL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|]� ⇥cASN

n

2

⇧b = f

�
Ub

Nn

⇥

⇧b = RU1/m
b

⇧b = RU1/n
b

⇧b = CU1/3
b N1/3

⇧b = CUp
bN

q

⇧b = µN

⇧b = µN

�
Ub

Ub + ⇤Nn

⇥1/n

⌧ b ⇥ �⌅igH⇤s

q = �Kh3⇤⌃

⌥h

⌥t
+⇤ · q = m+ r

⌥h

⌥t
=

⌅w
⌅i

m+
hr

lr
Ub � ⇥AhNn

h = he(N)

S N ⌃ ⌃0 h b s H

A n ⇥ ⇥c hr lr ⌅w ⌅i ub r R L K Kc

Q = KcS
4/3|s ·⇤⌃|1/2

⌥S

⌥t
+

⌥Q

⌥s
=

Q

⌅wL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|] +R

⌥S

⌥t
=

Q

⌅iL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|]� ⇥cASN

n

2

⇧b = f

�
Ub

Nn

⇥

⇧b = RU1/m
b

⇧b = RU1/n
b

⇧b = CU1/3
b N1/3

⇧b = CUp
bN

q

⇧b = µN

⇧b = µN

�
Ub

Ub + ⇤Nn

⇥1/n

⌧ b ⇥ �⌅igH⇤s

q = �Kh3⇤⌃

⌥h

⌥t
+⇤ · q = m+ r

⌥h

⌥t
=

⌅w
⌅i

m+
hr

lr
Ub � ⇥AhNn

h = he(N)

S N ⌃ ⌃0 h b s H

A n ⇥ ⇥c hr lr ⌅w ⌅i ub r R L K Kc

Q = KcS
4/3|s ·⇤⌃|1/2

⌥S

⌥t
+

⌥Q

⌥s
=

Q

⌅wL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|] +R

⌥S

⌥t
=

Q

⌅iL
[(1� �)|s ·⇤⌃|+ �⌅wg|s ·⇤b|]� ⇥cASN

n

2

�2(x, y)

p = q = 1
3

⇧b
N

= µ

�
Ub

Ub + ⇤ANn

⇥1/n

⇧b = µN

�
Ub

Ub + ⇤ANn

⇥1/n

⇧b
N

= f(⌥)

⌥ =
Ub

⇤ANn

f(⌥) = µ

�
⌥

⌥0 + ⌥

⇥1/n

f(⌥) = µq

�
⌥

⌥q
0 + ⌥q

⇥1/n

⇧b
N

= µ

�
⌥

⌥0 + ⌥

⇥1/n

⇧b
N

= µq

�
⌥

⌥q
0 + ⌥q

⇥1/n

M̂ = �1� ⌅wcw⇥

⌅wL
Q̂Ĝ
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�h

�t
=

Ub

 r
(hr � h)+ � ÂhNn
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The dependence on effective pressure suggests a need to think about subglacial hydrology…

Slides from Ian Hewitt’s presentation at the Karthaus Summer School.



Sliding on fine grained beds

Ice sheet sectors that experience sliding tend to rest on soft sediments.



Sliding on fine grained sediments

• Why does ice slide over fine grained sediments?
• Why doesn’t the ice just entrain small particles?

Rempel 2008

SwissEduc



Ice Premelting: molecular thermodynamics of ice premelting

David T. Limmer PNAS 2016;113:44:12347-12349

©2016 by National Academy of Sciences



Ice Premelting

• Premelting occurs many (but not all) interfaces.
• Premelting occurs due to the intermolecular 

forces that act at interfaces.
• These intermolecular forces affect many 

processes:
§ The transformation of snow into ice
§ The nucleation of snowflakes
§ Frost heave
§ Sediment entrainment in glacier ice
§ and glacier sliding ….



Premelting and glacier sliding

Many experiments have 
demonstrated that the melting point 
of ice is lowerwhen it is contained 
within a porous media.

This is due to the Gibbs-Thomson 
effect. (Dash et al., 2007)

The more well known GT effect is that 
small volumes of a sustance freeze at 
a lower temperature due to surface 
tension…


