Agenda for today

- Motivatation: Future Ice Sheet States, Pattyn et al. 2018
- The glacier surface energy balance
 - An energy balance case study
- Detailed look at katabatic winds
- Detailed look at
- Detailed look at the melt-elevation feedback

Turbulent sensible and latent heat fluxes

- Warm air flowing over ice adds sensible heat to the surface.
- Dry air flowing over ice removes moisture and therefore latent heat.
- Both of these processes occur through mixing in a *turbulent boundary layer.*

$$E_H = \rho_a c_a C_H u \left[T_a - T_s \right]$$

$$E_E = \rho_a L_{v/s} C_E u \left[q_a - q_s \right]$$

C_E and C_H are *bulk exchange parameters*, u is the velocity, q is the moisture content, T is temperature, rho is density, c is the specific heat, and L is the latent heat.

Haig Glacier, Alberta, Canada, 50.7 N https://backcountryskiingcanada.com/

Field example: Radiant Fluxes

- 1. Where is the biggest snowfall event? How can you tell? What is the total effect on the energy budget?
- 2. Why is there anticorrelation between net shortwave and net longwave?
- 3. Where on the glacier was this site located?
- 4. Why do both records start during sunny periods?

Field Example: Turbulent Fluxes

From Cuffey and Paterson

Modeling melting

Melting occurs when the glacier surface is

- 1. At the melting point, and
- 2. Has a positive net energy budget, E>0

The resulting melt rate is, $\dot{m}=$

In practice, a "positive degree day" model is most commonly used.

From Cuffey and Paterson

Energy Regimes: The coldest climates

- Surface temperatures are well below freezing -> A positive energy balance results in *heating* rather than *melting*.
- 1. Why does the sensible heat flux change sign seasonally?
- 2. What contributes to the radiative energy in the different seasons?
- *3. Why does the latent heat flux increase in the winter?*

Site	Elevation	Season	E _R	E_{H}	$\boldsymbol{E}_{\boldsymbol{E}}$
Vostok	3400 m	Summer	32	-25	-2
		Winter	-17	15	0
Mizuho	2230 m	Summer	20	-7	-8
		Winter	-38	37	0
Maudheim	37 m	Summer	9	6	7
		Winter	-22	13	+

[†] Not measured. From Cuffey and Paterson