
A FIRST PRINCIPALS APPROACH TOWARD MODELS OF

GLACIERS AND ICE SHEETS

In the following we’ll use the Reynolds Transport theorem. This theorem is basically a
generalization of the fundamental theorem of calculus (“the derivative of an integral equals
the integrand evaluated at the endpoints of integration”).

1. Conservation Laws

1.1. Conservation of Mass. The statement of conservation of mass is simply that the
time rate of change of a systems mass must be equal to the mass added to the system,

(1)
dM

dt
= sources of mass.

The total mass of the system M is the integral over its volume. For a glacier or ice sheet,
this volume changes shape in time, hence we denote the volume as V (t). The volume
has exterior surface S(t) and outward pointing unit normal vector n. Using the Leibniz
integration rule, we have

dM(t)

dt
=

d

dt

∫
V (t)

ρ(x)d3x

=

∫
V (t)

∂ρ(t,x)

∂t
d3x+

∫
S(t)

(u · n) ρ(t,x)d2x =

∫
V (t)

m(t,x)d3x,(2)

where m is the mass source distribution which may represent processes such as surface or
basal accumulation or ablation or the redistribution of mass due to the redistribution of
meltwater within an ice mass. We have assumed here that the velocity of the boundary
u ·n is simply related to the velocity of the material u, although this wouldn’t be the case
if we had chosen to analyze a volume V ′(t) that did not coincide with an actual material
boundary. Continuing, we apply the divergence theorem to the middle surface integral
and note that a vanishing integral over an arbitrary domain implies a vanishing integrand.
This results in the differential form of the statement of mass conservation,

(3)
Dρ

Dt
+ ρ∇u ≡ ∂ρ

∂t
+∇ (ρu) = m,

where we have introduced the total time derivative in the first equality.

1.2. Conservation of Momentum. The statement of conservation of momentum is,

(4)
dP

dt
= sources of momentum.
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Figure 1. A depiction of the cube-shaped control volume V (t) as described
in the analysis of momentum conservation showing self-consistent definitions
of the stress tensor components. Figure downloaded from Wikipedia on
September 5, 2018 under the Attribution-ShareAlike 3.0 Unported License
(CC BY-SA 3.0).

We first analyze the left hand side of Equation 4. As before,

d

dt

∫
V (t)

ρui d
3x =

∫
V (t)

∂ (ρui)

∂t
d3x+

∫
S(t)

ρui (u · n) d2x

=

∫
V (t)

[
∂ (ρui)

∂t
+∇ · (ρuiu)

]
d3x

=

∫
V (t)

[
uim+ ρ

∂ui
∂t

+ u · ∇ (ρui)

]
d3x(5)

In the last equality we have made a substitution using Equation 3. The uim term relates
to accelerations due to mass changes as a rocket might experience while burning its fuel
load. For glaciers it’s negligible and we neglect it in the following analysis.

To analyze sources of momentum, we now consider a small “material element” within
a larger volume. This small element will still be referred to as V (t) with surface S(t) as
before. Without loss of generality we may assume that this small volume is initially a
cube of dimension δ, as shown in Figure 1. The stress tensor components that impart
momentum on the control volume in the direction i are σi1, σi2, and σi3. Each of these
stress are imparted over two opposite walls of the cube. The force per unit volume acting
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in the ith direction is then,

δFi = σi1(x1 + δ)− σi1(x1)
+σi2(x2 + δ)− σi2(x2)
+σi2(x3 + δ)− σi2(x3)(6)

Dividing through by δ and taking the limit as δ → 0 shows that

(7) Fi =
∂σij
∂xj

Including the contribution from a distributed body force b(t,x) such as gravity gives the
left hand side of the momentum balance equation as,

(8)

∫
V (t)

[
∂σij
∂xj

+ b

]
d3x

Making a similar argument as before, the derivative form of the statement of momentum
conservation becomes,

(9) ρ
Du

Dt
= ∇ · σ + b

1.3. Conservation of Energy. The derivation of the statement of conservation of energy
is left as an exercise (#2).
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2. Constitutive laws and the deformation of glacial materials

The glacial system is composed of materials exhibiting a wide array of behaviors.
This section introduces the idea of a constitutive relationship or relationship between

two physical quantities such as stress and strain or strain rate (see the text by Malvern).
Glacial materials are complicated and it is generally not possible to write down a single
constitutive law that covers the entire range of material response over the full range of
behavior. Instead, it is more useful to describe several ideal responses that are valid over
a particular range of behaviors.

2.1. Incompressibility. With the goal of making simplifications to the mass balance
equation, we first consider the compressibility of ice. A compressible material exhibits
density fluctuations in response to an applied load. The corresponding constitutive rela-
tionship expresses

(10)
δρ

ρ0
=

p

K

where ρ0 is a reference density and K is the ice bulk modulus. Using this relationship,
we can then estimate the importance of density fluctuations in the overall mass budget
(Equation 3).

We want to investigate the largest imaginable changes in density, so we compare ice and
the surface of the ice sheet to ice at the bed. At the bed the pressure is very nearly ρgh,
which gives an estimate of the density perturbation δρ/ρ0 ≈ ρgh/K ∼ 0.1% for h = 4 km,
the deepest ice on earth. This suggests that density fluctuations are small compared to
the reference density, i.e., ρ0 � δρ. The ice in these deep throughs may be about 100 ka
in age. Comparing the first two terms of Equation 3 then gives,

(11)
(Dρ/Dt)/ρ

∇u
∼ 0.001/(105 years)

0.001/years
∼ 10−5.

At least for the conditions of synoptic scale flow, density variations are negligible. The
mass balance equation therefore simplifies to,

(12) ∇u = m/ρ

Other effects may be worth considering, however. Terry Hughes argued for decades that
thermal effects result in density variations that can drive flow near glacier beds. It would
make a great class project to dive into some of these details.

2.2. Deformation. Before discussing the viscous flow of ice, it’s first necessary to discuss
what it means for a material to deform. We consider a body which has a vector-valued
velocity field u. How much does the velocity field change between two points? Supposing
the separation to be dx, the velocity at the latter location will be

(13) u + du = u +
∂u

∂x
dx
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The quantity dij ≡ ∂u/∂x is the deformation gradient tensor. For reasons that will
become clear, we decompose this tensor into its symmetric and antisymmetric part,

(14) dij = εij + ωij

The strain rate tensor εij is the symmetric part of the deformation gradient tensor dij (the
Jacobian of the velocity field). The antisymmetric part of the deformation gradient tensor
is the rotation (vorticity) tensor ωij . The components of these tensors are,

(15) εij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and

(16) ωij ≡
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
.

The rotation tensor corresponds to a rigid body rotation. For this reason we assume
that its role may be described entirely by the choice of an appropriate coordinates system.
In the following, we focus on the deformational component associated with straining.

2.3. Viscosity. Laboratory stresses show that ice deforms under deviatoric stresses. De-
viatoric stresses τij are the difference between the total stress state σij and an isotropic
pressure P ,

(17) τij = σij + Pδij .

Written in terms of deviatoric stresses, the conservation of momentum becomes,

(18) ρ
Du

Dt
= ∇ · τ −∇P + b

A viscous material is defined by having a relationship between strain rate and stress,

(19) τij = ηεij .

Ice is distinguished by having a viscosity η that depends on (among other things) tem-
perature and strain rate. We begin by focusing on the strain rate dependence. This
dependence is shear thinning because viscosity is a decreasing function of strain rate,

(20) η(ε) = Bε
(1/n−1)
E .

The effective strain rate is defined to be,

(21) ε2E = εijεij/2,

which is an invariant of the strain rate tensor and therefore satisfies the requirement that
constitutive relations be independent of coordinate system.

Typical values are n = 3 and B = 75 MPa s1/3, which for strain rates in the range of
10−3 to 10−6 per year give effective viscosities in the range of 1014 to 1017 Pa s.
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3. The shallow ice approximation

3.1. Scale analysis. We examine the scaled momentum balance by noting the following
characteristic dimensions,

Horizontal extent, [L] ∼ 1000 km

Thickness, [H] ∼ 1000 m

Horizontal Velocity, [V ] ∼ 100 m/yr

Vertical Velocity, [W ] ∼ 0.1 m/yr

Pressure, [P ] ∼ ρg[H] ∼ 10 MPa

Time Scale, [T ] ∼ 1 Yr

Viscosity Scale, [N ] ∼ 1014 Pa s

We now rescale the governing equations with the form x = [X]x̃ for each quantity x.
The flow direction (x) momentum balance equations become, in two dimensions,

ρ
[V ]

[T ]

Dũx

Dt̃
=

[N ][V ]

[L]2
∂

∂x̃

[
η̃
∂ũx
∂x̃

]
+

∂

∂z̃

[
η̃

2

(
[N ][V ]

[H]2
∂ũx
∂z̃

+
[N ][W ]

[L][H]

∂ũz
∂x̃

)]
− [P ]

[L]

∂P̃

∂x̃
(22)

or, just writing the scaling factors,

ρ
[V ]

[T ]
∼ [N ][V ]

[L]2
+

[N ][V ]

[H]2
+

[N ][W ]

[L][H]
− ρg[H]

[L]
(23)

We note that the Froude Number

(24)
ρ[V ]/[T ]

[P ]/[L]
∼ 10−10

is small. We can therefore neglect inertial effects. The aspect ratio ε ≡ [H]/[L] ∼ 10−3 is
also small. Multiplying through by [H]2 gives

ε2[N ][V ] + [N ][V ] + ε[N ][W ]− ε[P ][H] ∼ 0(25)

Evaluating the scales suggests that the flow-direction momentum balance be approximated
to lowest order as,

(26)
∂σxz
∂z

=
∂p

∂x

Note that we have kept the pressure gradient term, despite it having the small parameter
ε.

The corresponding result for the vertical momentum balance,

∂p

∂z
= ρg,(27)

is said to be hydrostatic because the pressure is just equal to the weight of the overburden.
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3.2. Analysis of the reduced equations. Integrating the vertical momentum balance
gives p(H) − p(z) = ρg(H − z), which then is inserted into the horizontal momentum
balance,

(28)
∂σxz
∂z

= −ρg∂H
∂x

Integrating again,

(29) [σxz]
H
z = −τxz(z) = −ρg∂H

∂x
(H − z)

Finally, we use the constitutive law for viscous flow,

(30) τxz =
B

2

(
∂ux
∂z

)1/n

= ρg
∂H

∂x
(H − z)

Integrating gives,

ux(z) =

[
2ρg

B

∂H

∂x

]n ∫ z

B
(H − z′)ndz′

=

[
2ρg

B(n+ 1)

∂H

∂x

]n
hn+1

[
1−

(
H − z
h

)n+1
]

+ uB(31)

Where uB is the sliding velocity at the bed.
We integrate one more time to find the depth-averaged velocity as,

U =
1

h

[
2ρg

B(n+ 1)

∂H

∂x

]n ∫ z

B

[
hn+1 − (H − z)n+1

]
dz′

=

[
2ρg

B(n+ 2)

∂H

∂x

]n
hn+1

3.3. Boundary conditions. The ice surface has zero traction, which means that σijnj =
0, where nj is the surface normal vector. This is called the dynamic boundary condition.

The ice surface (and bed) both move in time. The ice surface is located along the curve,

(32) 0 = z −H(x, t)

Taking the complete derivative,

d

dt
z − d

dt
H(x, y, t) = asurface = uz(z = H)− ∂H

∂t
− ∂x

∂t

∂H

∂x
(33)

Where asurface is the specific surface mass balance rate. Rearranging gives,

uz(z = H)− ux(z = H)
∂H

∂x
=
∂H

∂t
+ asurface.(34)

Similarly at the bed,

uz(z = B)− ux(z = B)
∂B

∂x
=
∂B

∂t
+ abed.(35)

These equations are called kinematic boundary conditions because they are purely geomet-
rical. We will later simply write a ≡ abed + asurface.
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3.4. Mass balance. We consider the vertically integrated mass balance. Integrating
Equation 3 gives,

(36)

∫ H(x,t)

B(x,t)

(
∂ux
∂x

+
∂uz
∂z

)
dz =

∫ H(x,t)

B(x,t)
m/ρdz = 0

We have assumed that no internal mass redistribution occurs by setting the RHS to zero.
We will then later deal with mass added externally as a boundary condition.

The left hand side is equal to∫ H(x,t)

B(x,t)

(
∂ux
∂x

)
dz + uz(z = H)− uz(z = B)

=
∂

∂x

∫ H(x,t)

B(x,t)
uxdz − ux(z = H)

∂H

∂x
+ ux(z = B)

∂B

∂x
+ uz(z = H)− uz(z = B)

=
∂(hU)

∂x
− uH

∂H

∂x
+ uB

∂B

∂x
+ uz(z = H)− uz(z = B)

3.5. Synthesis. Combining the kinematic boundary conditions with the mass balance
equation gives,

(37)
∂h

∂t
=
∂(hU)

∂x
+ a

Together with the depth averaged velocity,

(38) U =

[
2ρg

B(n+ 2)

∂H

∂x

]n
hn+2

Inserting U into Equation 39 gives

(39)
∂h

∂t
=

∂

∂x

{[
2ρg

B(n+ 2)

∂H

∂x

]n
hn+1

}
+ a

Which is a nonlinear diffusion equation called the Shallow Ice Approximation (SIA).


