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Abstract Distant storms, tsunamis, and earthquakes generate waves on floating ice shelves. Previous
studies, however, have disagreed about whether the resulting wave-induced stresses may cause ice shelf
rift propagation. Most ice shelf rifts show long periods of dormancy suggesting that they have low back-
ground stress concentrations and may therefore be susceptible to wave-induced stresses. Here I quantify
wave-induced stresses on the Ross Ice Shelf Nascent Rift and the Amery Ice Shelf Loose Tooth T2 Rift using
passive seismology. I then relate these stresses to a fracture mechanical model of rift propagation that
accounts for rift cohesive strength due to refrozen melange, ice inertia, and spatial heterogeneity in fracture
toughness due to the presence of high toughness suture zones. I infer wave-induced stresses using the
wave impedance tensor, a rank three tensor that relates seismically observable particle velocities to compo-
nents of the stress tensor. I find that wave-induced stresses are an order of magnitude larger on the Ross
Ice Shelf as compared to the Amery Ice Shelf. In the absence of additional rift strength, my model predicts
that the Nascent Rift should have experienced extensive rift propagation. The observation that no such
propagation occurred during this time therefore suggests that the Nascent Rift experiences strengthening
from either refrozen melange or rift tip processes zone dynamics. This study illustrates one way in which
passive seismology may illuminate glacier calving physics.

1. Introduction

Floating ice shelves exert a net buttressing force on grounded ice and therefore support the stability of ice
sheets (Doake et al., 1998; Rignot et al., 2004; Scambos et al., 2004). The extent of ice shelfs is often limited
by the formation of 10–100 km long, through-thickness fractures called rifts. Rifts tend to grow in length
until they connect to the ice front and create a tabular iceberg (Jacobs et al., 1986; Keys et al., 1998; Robin,
1979; Shabtaie & Bentley, 1982). Observations show that rifts experience most of their growth during epi-
sodic bursts of activity (Joughin & MacAyeal, 2005) that last from seconds (Banwell et al., 2017; Powell,
2015) to hours (Bassis et al., 2005). These short time scales suggest that rift propagation is a brittle process,
meaning that during episodes of rift propagation the ice shelf is well approximated as an elastic solid every-
where except in a small region near the rift tip (Broek, 2012). Ductile fracture, in contrast, may occur by the
slow coalescence of microcracks (Borstad et al., 2012, 2013; Duddu et al., 2013; Duddu & Waisman, 2013;
Lemaitre, 1985; Pralong & Funk, 2005; Rice & Tracey, 1969; Weiss, 2004) and results in an essentially viscous-
plastic ice rheology. Field observations show that ductile fracture also occurs in ice shelf rifts, although it
typically is associated with slower growth (Bassis et al., 2007). Linear elastic fracture mechanics is well suited
to describe brittle fracture and has previously been used in the study of ice shelf rift propagation, crevasse
growth, calving, and hydrofracture (Alley et al., 2005; Krawczynski et al., 2009; Krug et al., 2014; Larour et al.,
2004a; Nemat-Nasser et al., 1979; Plate et al., 2012; Rist et al., 2002; Scambos et al., 2009a; Smith, 1976; Van
der Veen, 1998; Yu et al., 2017; Weertman, 1971, 1973).

Brittle fracture is driven by loading applied to sharp geometrical features such as the tip of an ice shelf rift
(Griffith, 1921). The resulting stress concentration may be quantified using the stress intensity factor K (Irwin,
1957). The stress intensity factor K may in turn be expressed entirely in terms of the loading exerted on a
system (Rice, 1968), which in ice shelves consists of contributions from gravity, buoyancy, and interaction
with grounded and floating ice (Reeh, 1968; Weertman, 1957). Catalogs of Antarctic ice shelf rifts, however,
show that this loading often results in zero measurable propagation over years to decades of observation
(Walker et al., 2013, 2015). Rift propagation, when it does occur, is typically observed to be highly episodic
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in time (Bassis et al., 2005). In the context of linear elastic fracture mechanics, this observation suggests that
ice shelf rifts commonly attain a state of stress such that K < Kc and no propagation occurs. I argue that this
is the precise setting that allows ocean waves to effectively drive episodic ice shelf rift propagation.

The exact mechanism responsible for the episodic nature of ice shelf rift propagation remains the subject of
multiple competing hypotheses in the literature. Three processes have been proposed as being of impor-
tance: spatial heterogeneity of fracture toughness, constitutive instability, and temporal variation in loading
due to interaction with ocean waves. In regards to spatial heterogeneity, ice shelf suture zones that form at
provenance boundaries in the ice shelf appear to be particularly important. Rapid rift tip propagation events
are often observed to terminate when the rift tip reaches an ice shelf suture zone (Borstad et al., 2017; Hulbe
et al., 2010; McGrath et al., 2014). Wave action also appears to play a role. In studies of the Nascent Rift, Mac-
Ayeal et al. (2006) and Cathles et al. (2009) revived the idea of Holdsworth and Glynn (1978) that wave-
induced stresses might cause rift propagation. However, Bassis et al. (2005, 2007, 2008) also analyzed in situ
seismic data from the Loose Tooth and concluded that rift propagation there was driven primarily by glacial
stresses. Although other studies have appeared to confirm the importance of wave action in rift propagation,
these studies were limited by not having in situ seismic data. Using remotely sensed imagery, Brunt et al.
(2011) observed rift propagation following the arrival of a tsunami. Banwell et al. (2017) used a nearby seis-
mometer located on bedrock to show that a rift propagation event on the McMurdo Ice Shelf occurred during
the arrival of large amplitude ocean waves from a distant storm. Finally, a constitutive instability, essentially
the opening-mode equivalent of the shearing-mode stick-slip instability (Lipovsky & Dunham, 2016, 2017),
has been proposed to be important for episodic rift motion (Larour et al., 2004a). One of the goals of this
paper is to develop a theoretical framework within which to compare the predictions of these hypotheses.

Seismometers located directly on floating ice shelves quantify the ice shelf wave field. Using an appropri-
ately defined transfer function called the wave impedance it is therefore possible to calculate stresses from
in situ velocity seismograms. In a similar vein, Williams and Robinson (1981) used a transfer function
approach to estimate water pressure fluctuations from 1 min period gravimeter measurements on the Ross
Ice Shelf. The stresses carried by waves in ice shelves have been previously analyzed in an idealized geome-
try by Holdsworth and Glynn (1978) and Sergienko (2010, 2013) and in more realistic geometries by Kono-
valov (2014) and Sergienko (2017). Each of these studies, however, calculated the ice shelf response to
idealized, monochromatic wave forcing. Here I build on these previous studies by estimating the stresses
associated with the in situ ice shelf wave fields as recorded by seismometers located on floating ice shelves.
I begin this paper in the first section by describing ice shelf wave impedances (section 2).

I describe a fracture mechanical model of ice shelf rift propagation in section 3. I then apply this model to
the wave-induced stresses inferred at sites near the Ross Ice Shelf Nascent Rift and the Amery Ice Shelf
Loose Tooth Rift (sections 4 and 5). These ice shelves are shown in Figure 1. The principal finding of this
analysis is that, in the absence of some additional source of rift strength, wave-induced stresses are pre-
dicted to have been sufficiently large to cause rift propagation on the Nascent Rift. Satellite imagery, how-
ever, shows that no observable rift propagation occurred during the observation periods under
consideration. This finding therefore suggests that the Nascent Rift experienced strengthening that pre-
vented rift propagation during this time. One potential source of this strength is refreezing in the rift-filling
melange (Fricker et al., 2005; Larour et al., 2004b; MacAyeal et al., 1998; Rignot & MacAyeal, 1998). This and
other topics are discussed in section 6.

The analysis presented here connects qualitative predictions of ice shelf instability (Holdsworth & Glynn,
1978) to geophysical measurement (Bassis et al., 2007; Bromirski et al., 2017; Brunt et al., 2011; Cathles et al.,
2009; MacAyeal et al., 2006) and therefore unleashes the power of seismology to elucidate the detailed
mechanics of ice shelf rift propagation.

2. Wave Stresses

Seismometers located directly on floating ice shelves measure the Lagrangian particle velocity, within a cer-
tain frequency range, of the parcel of ice on which they rest. In this section, I derive a transfer function
called the wave impedance that relates these particle velocity perturbations to their associated stresses per-
turbations. I calculate wave impedances for two types of long period ice shelf waves: flexural waves and
extensional waves. I will show that there are two main differences between these wave types. First, the
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flexural wave impedance is frequency-dependent but the extensional wave impedance is not. Second, flex-
ural wave impedances tend to be much higher than extensional wave impedances. These results are sum-
marized in Figures 2 and 3.

In order to write down expressions for the wave impedances, it is first necessary to describe the waves
themselves. In Appendix A, I describe ice shelf wave motion in a finite-thickness elastic ice shelf over an
inviscid, incompressible, finite-thickness water layer and rigid ocean floor. I consider waves that propagate
in the direction of flow, and I treat a two-dimensional cross section in the vertical and flow directions. Sev-
eral limitations associated with these assumptions are discussed in section 6. In Appendix B I show that
waves with wavelength greater than the ice thickness may propagate as either flexural or extensional
waves. I begin this section by describing the general wave impedance transfer function (section 2.1).

2.1. Ice Shelf Wave Impedances
The transfer function between the perturbation velocity vector component vl � @ul=@t and the perturba-
tion stress tensor component rij is called the wave impedance. It is defined as:

Zijlðk;xÞ5
Rijðk;xÞ

ð2ixÞUlðk;xÞ
: (1)

Here the subscripts i, j, and l may vary over the three spatial coordinates x, y, and z. The spatial coordinates
are defined so that x is in the direction of ice flow, z is positive upward, and y is perpendicular to x and z fol-
lowing the right-hand rule. Upper case letters denote the double Fourier transform in time t and in the hori-
zontal direction x. For an arbitrary, adequately smooth function f, the Fourier transform of f is denoted,

Fðk; z;xÞ5
ð1

21

ð1
21

f ðx; z; tÞeiðkx2xtÞdxdt (2)

This definition introduces the horizontal wave number k and frequency x.

The impedance tensor defined in this way allows the estimation of wave field stresses using multiplication
in the Fourier domain,

rijðx; tÞ5
ð1

21

ð1
21

Zijlðk;xÞUlðk;xÞeiðkx2xtÞdkdx: (3)

The exact form of the wave impedance tensor components depends on the type of wave being considered.
For both flexural and extensional waves, the wave impedance is a function of the wave phase velocity.
These wave phase velocities are derived in Appendix B, and the associated particle motions are described
in Appendix C.

2.2. Flexural Waves
The impedance of a wave generally depends on the wave phase velocity c � x=k. Writing in terms of the
wavelength k � 2p=k, the phase velocity of flexural-gravity waves is determined by the dispersion relation:

x25
2pg
k

kfg=k
� �4

11

2pðq=qwÞh=k1coth 2pH=kð Þ ; (4)

with water layer thickness H, ice thickness h, acceleration due to gravity g, flexural-gravity wave length kfg,

kfg � 2p
D

gqw

� �1=4

; (5)

flexural rigidity D � E0h3; E0 � E=ð12m2Þ, Young’s Modulus E, and
Poisson ratio m. The material properties of ice are listed in Table 1. At
the tip of the Nascent and Loose Tooth Rifts, kfg57:1 and 7.8 km,
respectively (Fretwell et al., 2013).

The flexural-gravity wave length kfg separates two regimes of wave
behavior (Figure 2). When k� kfg the dispersion relation is identical
to that for surface gravity waves. In contrast, when k� kfg, the domi-
nant restoring force is elasticity and gravity does not enter the

Table 1
Table of Ice Mechanical Properties (Schulson et al., 2009)

Shear modulus l 3.5 GPa
Young’s modulus E 9.3 GPa
Poisson ratio m 0.33
Density of ice q 916 kg/m3

Density of seawater qw 1,024 kg/m3

Dilatational wave speed cp 3,750 m/s
Shear wave speed cs 1,950 m/s
Fracture toughness Kc 100–400 kPa

ffiffiffiffi
m
p
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dispersion relation. As described in detail in Appendix B, this dispersion relation is valid for waves with
wavelength greater than the ice thickness.

I calculate the flexural mode rxx-to-uz impedance component as:

ZF
xxz5

Rxx

ð2ixÞUz
� ð2ixÞ hE0

½cðxÞ�2
: (6)

In writing equation (6), I have used the expressions for the extensional wave stress Rxx and vertical displace-
ment Uz derived in Appendix C. The approximate equality symbol reflects the long wavelength approxima-
tion as discussed in Appendix B.

This impedance component is plotted in Figure 2. Flexural wave impedance reaches a maximum at the fre-
quency associated with the flexural-gravity wavelength kfg. Below this frequency, impedance increases pro-
portional to frequency x. Above this frequency, impedance is a decreasing function of frequency.

Flexural stresses, denoted rf, may be calculated from a vertical component velocity seismogram vzðtÞ5@uz=

@t by convolving a velocity time series with the transfer function in equation (6),

rf ðtÞ � rxxðtÞ5E0h
ð ð2ixÞVzðxÞ

c xð Þ½ �2
eixt dx: (7)

In this expression, I have used the definition of the phase velocity to eliminate reference to the wave number k.

A simplified case occurs for wavelengths longer than the water depth H and the flexural-buoyancy wave-
length kfg. In this case c25gH is nondispersive and therefore independent of frequency. The integral in
equation (7) may therefore be evaluated as:

rf ðtÞ5
E0h
gH

@V
@t
: (8)

This result is interesting because it shows that waves in the gravity limit have stresses that are proportional to par-
ticle acceleration. This is in contrast to body waves which have stresses that are proportional to particle velocity.

2.3. Extensional Waves
Extensional waves have nondispersive phase velocity

x
k

5

ffiffiffiffi
E0

q

s
: (9)

This phase velocity is the plane strain equivalent of the wave speed in a one-dimensional elastic bar,
ffiffiffiffiffiffiffiffi
E=q

p
.

For the material properties of ice (Table 1), this phase velocity is equal to 3,375 m/s. The extensional mode
does not exhibit any ice-ocean interaction (Appendix A). As was also the case for flexural-gravity waves, this
dispersion relation is only valid for waves with wavelength greater than the ice thickness (Appendix B).

The extensional mode has rxx-to-ux impedance component,

ZE
xxx5

Rxx

ð2ixÞUx
� 2

ffiffiffiffiffiffiffiffiffi
2ql
11m

r
: (10)

For the material properties of ice ZE
xxx � 2:07 kPa/(mm/s). This value differs from the corresponding S wave

impedance by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð11mÞ

p
� 1:23.

Extensional stresses, denoted re, may be calculated from a horizontal component velocity seismogram vxðtÞ
5@uz=@t as a simple time domain multiplication,

reðtÞ � rxxðtÞ5ZE
xxx vxðtÞ: (11)

3. Fracture Mechanics

I analyze brittle fracture using the energy-based Griffith fracture criterion (Griffith, 1921) expressed in terms
of the stress concentration at the rift tip (Irwin, 1957). In this description, a preexisting fracture will grow in
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length when its associated stress intensity factor K exceeds a critical value Kc called fracture toughness, a
material property. For ice, Kc ranges between 150 and 400 kPa

ffiffiffiffi
m
p

(Rist et al., 2002). In section 6.4, I discuss
the uncertainties associated with fracture toughness values.

The model developed in this section depicts the scenario where an ice shelf rift is loaded by wave-induced
ocean stresses that are fast enough to be elastic but slow enough that inertia is negligible. As stresses
increase over a wave period of tens to hundreds of seconds, the stress concentration at the rift tip increases.
Once K > Kc , rift tip propagation occurs. In contrast to the loading stage, rift tip propagation may occur suf-
ficiently rapidly so that the rate of propagation becomes limited by the inertia of the ice. Before proceeding
with this treatment in section 3.1, I make two technical notes.

First, I note that inertia is negligible for perturbations with phase velocities far below the elastic waves
speeds (see Appendix A). Such perturbations are called quasi-static to reflect that they are time dependent
but have negligible inertial influence. In Appendix B, I demonstrate that the quasi-static approximation is
valid for ice shelf flexural waves but not for extensional waves because long period extensional waves are
not quasi-static. Treating the initiation of propagation as quasi-static is nonetheless a reasonable approxi-
mation for the data considered in this paper, however, because in section 5, I show that flexural stresses are
much larger than extensional stresses and therefore are more likely to be responsible for the onset of rift
propagation.

Second, I note that the applicability of linear elastic fracture mechanics rests on the condition of small
scale yielding. Before continuing I verify this condition. Small scale yield occurs when all dimensions of
a fractured object are much greater than the dimension of the plastic region surrounding the rift tip.
An estimate of the plastic region size for an ideally elastic-plastic material is (Broek, 2012) ðKc=ryÞ2,
where Kc � 100 kPa m1=2 is the fracture toughness of ice (Rist et al., 2002) and ry � 100 kPa is the
yield stress of ice (Van der Veen, 1998). These estimates give a critical flaw size of about 1 m. Using a
larger fracture toughness of Kc � 400 kPa m1/2 gives plastic zone size 16 m. For typical ice shelf thick-
nesses of one to several hundred meters, we may safely proceed with a plane strain fracture mechan-
ics treatment.

3.1. The Onset of Propagation
For a fixed geometry, the stress intensity factor is a linear functional of the stress tensor. The combined
effects of background glacial loading and waves may therefore be treated by superposition,

K5Kglacial stresses1Kwaves: (12)

I treat the situation where the rift stress intensity factor K due to glacier stresses is lower than the fracture
toughness K < Kc . This is a reasonable assumption for rifts which are dormant because under linear elastic
fracture mechanics, a crack is expected to have zero propagation if and only if the stress intensity factor is
below the fracture toughness K < Kc . The catalog of rifts published by Walker et al. (2013) shows that the
majority of Antarctic rifts are dormant, thus suggesting that the analysis developed here applies to the
majority of Antarctic rifts. For simplicity, I assume that Kglacial stresses � 0. Rift propagation would occur at a
lower stress than predicted if Kglacial stresses > 0.

The stress intensity factor due to wave motion may then be broken into flexural and extensional
components,

K � Kextension1Kflexure: (13)

The stress intensity factor due to extensional motion is (Broek, 2012),

Kextension5re

ffiffiffiffiffiffiffiffiffiffi
pL=2

p
: (14)

The stress intensity factor due to bending of a buoyantly floating plate is (Ba�zant, 1992),

Kflexure5jrf j
ffiffiffiffiffiffiffiffiffi
pkfg

q
; (15)

where the flexural-gravity wavelength is defined in equation (5). This stress intensity factor for bending of a
floating plate is valid for rifts that are longer than the flexural-gravity wavelength.
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3.2. Inertial Effects during Rift Tip Propagation
The rapid propagation of fractures requires accounting for elastoynamic effects. Freund (1972a, 1972b) was
the first to generalize the analysis of Irwin (1957) to the elastodynamic case. He found that the stress inten-
sity factor may be written as the product of static and dynamic terms,

K L; _L
� �

5j _L
� �

K0ðLÞ; (16)

where an overdot denotes a time derivative. Here K0ðLÞ is the time-independent stress intensity factor,
which is identical to the stress intensity factor that would occur due to loading of a rift with instantaneous
length L. The function j has its origin in a particular elastodynamic transfer function, and is well approxi-
mated by

k _L
� �
� 12

1
cr

@L
@t
; (17)

where cr is the Rayleigh wave speed in ice. The conditions under which equation (16) is valid are quite gen-
eral (Freund, 1998; Rice, 2001). Specifically, the existence of the factorization of the stress intensity factor
into static and dynamic parts is independent of geometric and loading configuration.

Combining Equations (16) and (17) gives the rift tip equation of motion

@L
@t

5
cr 12

Kc

K

� �2
" #

K � Kc

0 K < Kc

:

8>><
>>: (18)

This result has general features which have been noted previously (Freund, 1998), but are worth highlight-
ing. In particular, the crack tip velocity has an instantaneous dependence on the stress level through the
stress intensity factor K. This instantaneous response results because there is no sensitivity to the second
derivative of L in equation (18). Integrating the rift tip velocity gives the rift propagation distance,

dLðtÞ5cr

ðt

0
12

Kc Lðt0Þ½ �
K½rðt0Þ; Lðt0Þ�

� �
dt0: (19)

I note that this description accounts for spatial variability in fracture toughness due, for example, to the
presence of high toughness suture zones with accreted basal marine ice (Holland et al., 2009; Jansen et al.,
2013; LeDoux et al., 2017; McGrath et al., 2012).

4. Observations of the Loose Tooth and Nascent Rifts

4.1. Rift Propagation Behavior
In this paper, I analyze two rifts, the Nascent Iceberg Rift on the Ross Ice Shelf and the Loose Tooth T2 Rift
on the Amery Ice Shelf. I focus on observation periods during which seismic data is available: November
2005 to May 2006 on the Ross Ice Shelf and January to February 2007 on the Amery Ice Shelf. During these
times, the Loose Tooth and Nascent Rifts were 17 and 46 km long (Scambos et al., 2007). The tip of the
Nascent Rift was located in ice with thickness h 5 265 m. The ocean floor was 691 m below sea level and
the subshelf cavity was therefore H 5 479 m thick. The tip of the Loose Tooth Rift was located in ice with
thickness h 5 301 m. The ocean floor was 734 m below sea level and the subshelf cavity was therefore
H 5 466 m thick. These geometries are compared in Figure 1.

During these time periods, neither rift exhibited measurable rift propagation. This is probably due to the
fact that both rifts have propagated into ice suture zones that apparently have higher fracture toughness
than the surrounding ice shelf (Borstad et al., 2017). I reach these conclusions by examining satellite imag-
ery as archived in the Antarctic Ice Shelf Image Archive at the National Snow and Ice Data Center (Scambos
et al., 2009b). These images are captured using the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument. The observation that the Amery did not exhibit propagation during this time has been
previously noted by Walker et al. (2015). The nominal resolution of 250 m places an upper bound on the
amount of propagation that could go undetected, although because of uncertainties in image analysis
Walker et al. (2015) uses a great uncertainty of 1 km, which I adopt here.
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4.2. Seismic Data
I analyze continuously recorded seismograms from seismometers on the Ross and Amery Ice Shelves, Ant-
arctica. These data sets were previously described by MacAyeal et al. (2006) and Cathles et al. (2009) and by
Bassis et al. (2008), respectively. I obtain all seismograms from the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center website. The locations of the seismometers used in this study
are shown in Figure 1.

On the Ross Ice Shelf I examine data from the station RIS2, temporary
network code XV, during the 2005–2006 deployment (MacAyeal et al.,
2006). RIS2 was located several km from the tip of the Nascent Rift.
From this deployment, there are 167 d of data with one outage of sev-
eral days in late March 2006. On the Amery Ice Shelf I examine data
from the station BFN1, temporary network code X9, during a deploy-
ment in January 2007. From this deployment there are 36 d of data.
Although many other instruments were deployed over a period of
several years, I focus on this station because it uses a Guralp CMG-40T
seismometer while most other stations use Mark Products L28 seis-
mometers. The CMG-40T has a flat instrumental response down to
0.03 Hz and is therefore expected to be better suited for measuring
ocean waves with typical periods of several seconds.

Inferring stresses from seismograms requires interpreting the amplitude
information contained in seismic traces. The issue of instrumental
response therefore requires special attention. Seismometers have
reduced sensitivity to motions below the instrumental sensitivity fre-
quency. When the instrument response is deconvolved from a discre-
tized voltage trace (with units of counts), this insensitivity results in
division by a small number, thereby amplifying small amounts of noise.
Although geophysically interesting information may be contained at
frequencies lower than the instrumental sensitivity frequency, in this
study I take a conservative approach and only interpret features in

Figure 1. Profiles showing the geometry of the (a) Amery and (b) Ross. Ice Shelves and their position within the Antarctic
Ice Sheet. The red triangles mark the locations of the two seismometers used in this study. The two cross sections are
drawn at the same scale to emphasize geometrical differences between the two ice shelves.

Figure 2. Wave speeds and impedances for extensional waves (dashed lines)
flexural-gravity waves (solid lines). For the flexural-gravity waves, the curves are
calculated for subshelf cavity thickness H 5 466 m and ice thickness h 5 265 m.
All curves are drawn until hk 5 1/2, reflecting the long wavelength
approximation.
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seismograms that occur at frequencies above the sensitivity frequency.
I first taper and then band-pass filter all raw seismic traces. The band-
pass filter has cutoff frequencies 0.01, 0.02, 0.2, and 0.4 Hz. I then
remove the instrumental response from all seismograms. In all of my
analysis I focus on the LH channels that are sampled at 1 Hz.

Spectrograms of the waveforms used in this study shown in the spec-
trogram in Figure 4. The principal feature is the arrival of ocean swell
from distant storms. These storm waves appear as upward sloping
spectral lines. This occurs because long period ocean swell travels
faster and therefore arrives before short period swell (Munk et al.,
1963). This signal has been described extensively by Cathles et al.
(2009) and the interested reader is referred there for more details.

5. Analysis of Seismic Data From the Ross and Amery
Ice Shelves

5.1. Wave-Induced Stresses
Using the data described in section 4.2, I estimate flexural stresses rf

using equation (7) and extensional stresses re using equation (11).
There are two primary results (Figure 5). First, wave stresses are much
greater on the Ross Ice Shelf than on the Amery Ice Shelf. Second, on
both the Amery and the Ross Ice Shelf, flexural waves carry greater
stresses than extensional waves. These two patterns are true of the
peak stresses as well as the root mean squared (RMS) averaged

stresses. The largest observed flexural and extensional stresses on the Ross Ice Shelf were 14.2 and 0.8 kPa,
respectively. On the Amery Ice Shelf, the largest observed flexural and extensional stresses were 2.1 and
0.09 kPa, respectively. The RMS flexural and extensional stresses on the Ross Ice Shelf were 0.6 and 0.03 kPa.
The RMS flexural and extensional stresses on the Amery were 0.2 and 0.01 kPa.

The most likely reason for the higher observed wave stresses on the Ross Ice Shelf compared to the Amery
is that the Ross seismograms are much longer (167 d) than the Amery seismograms (36 d) and were there-
fore able to record a wider range of variability in ocean wave activity. To test this hypothesis, I examine the
most quiet period during the Ross deployment, December 2005. I refer to this as the Ross quiet period. I
find that the wavefield stresses during the Ross quiet period were similar to those on the Amery Ice Shelf.
During the Ross quiet period, the maximum inferred flexural and extensional stresses were 2.0 and 0.13 kPa,
respectively.

Figure 3. Maximum ice shelf stresses generated in response to waves with
0.5 mm/s particle velocity amplitude. To simulate the effect of ice shelf thin-
ning, curves are calculated for constant ocean floor depth H1ðq=qwÞh but vari-
able ice thickness h. Stresses refer to the bending stress for flexural waves and
the extensional stress for extensional waves. The maximum stress is calculated
for each geometry over all wavelengths k. The highest flexural wave stress
occurs for waves with wavelength k near the flexural-gravity wavelength kfg

(see Figure 2a).

Figure 4. Spectrogram of the data from the (a) Ross and (b) Amery. Ice Shelves. Upward sloping spectral bands show the
arrival of ocean swell from distant storms (Cathles et al., 2009). Both data sets are plotted with the same log-power color
scale.
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Flexural waves carried greater stresses than extensional waves during the two observation periods. The
Ross Ice Shelf wave field had extensional waves with greater particle velocity amplitude than flexural wave
particle velocity amplitude by a factor of three (Bromirski et al., 2010, 2015, 2017). These two waves, how-
ever, have different wave impedances. As a result, the larger stress need not be caused by the larger particle
velocity.

5.2. Rift Propagation
Using the estimated stresses, I calculate the stress intensity factor K using equation (13). There are two main
results. The first result is that waves stresses were exceeded the fracture criterion on the Ross Ice Shelf but
not on the Amery Ice Shelf (Figure 6). As discussed later (section 6.4), I assume a fracture toughness Kc 5 400
kPa

ffiffiffiffi
m
p

to represent tough suture zones with accreted basal marine ice. With this fracture toughness, I pre-
dict that rift propagation was possible for a cumulative total of 	104 s during the Ross Ice Shelf observation

Figure 5. Calculated wave stresses on the Ross and Amery Ice Shelves. Note the different horizontal and vertical axes.
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period. On the Amery Ice Shelf and during the quiet period on the Ross Ice Shelf, I predict that wave
stresses were not large enough to induce propagation.

The second result is that, in the absence of any other resistance to rift propagation, the inferred wave-
induced stresses are predicted to have caused much more propagation than was actually observed. I use
the integral in equation (19) to calculate rift tip propagation distances. On the Ross Ice Shelf, a fracture
toughness Kc 5 400 kPa

ffiffiffiffi
m
p

results in a physically unrealistic 106 km of rift tip propagation. Actual rift propa-
gation was measured to have been less than 1 km during the observation period (section 4). Motivated by
this discrepancy, I next consider several possible sources of resistance to ice shelf rift propagation.

5.3. Rift Cohesive Strength
In order to match the observed lack of rift propagation, I consider two additional types of rift strength. First,
I consider the situation discussed by Bassis et al. (2007) where the fracture toughness experiences an
increase by an amount D to a new value Kc1D. This perturbed value could equally well represent fracture
toughness variation in space or in time. Returning to the calculation in the previous section, I find that a
value of D 5 1,600 kPa

ffiffiffiffi
m
p

is necessary to match the observation that less than 1 km of propagation
occurred. This value results in a total ice fracture toughness 	2 MPa

ffiffiffiffi
m
p

, which is an order of magnitude
higher than typical laboratory-derived values (Rist et al., 2002). For this reason, I consider variable fracture
toughness to not be a viable mechanism to explain the observed rift behavior.

As a second strengthening mechanism, I consider the cohesive effect of refrozen melange and sea ice
between the rift walls. The stress intensity factor due to a uniformly applied stress acting to resist rift open-
ing is the same as in equation (14) but with opposite sign (Sih, 2012),

Kcohesion52rc

ffiffiffiffiffiffiffiffiffiffi
pL=2

p
; (20)

where rc is defined here to be the stress due to cohesive melange and sea ice that act to ‘‘glue’’ the rift walls
together. Equation (13) then becomes,

K � max Kextension1Kflexure1Kcohesion; 0½ �: (21)

The maximum function is applied because the cohesive strength does not result in a negative stress inten-
sity factor K. A negative K would imply closing motion of the rift walls. Instead, a cohesive stress is gener-
ated only in response to wave stresses and therefore never results in negative K.

Figure 6. Comparison of the wave-induced stress intensity factor on the Ross (blue) and Amery (red) Ice Shelves. During
the time of minimal wave activity on the Ross Ice Shelf (light blue), wave stresses were comparable to those observed on
the Amery Ice Shelf. The stress intensity factor was computed from seismograms using equation (13) and does not
account for cohesive strengthening (section 5.3). The dashed lines shows the fracture toughness Kc and therefore the
value of the stress intensity factor K at which rift propagation is predicted to occur.
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I find that a cohesive stress rc56:8 kPa is the minimum required
cohesive stress necessary to produce dL < 1 km. This result is plotted
in Figure 7, which plots the predicted amount of rift propagation as a
function of the cohesive strength of the rift. In the section 6.5, I dis-
cuss several interpretations of this cohesive stress.

6. Discussion and Conclusions

6.1. Uncertainties in the Calculation of Wave-Induced Stresses
I have calculated ice shelf stresses from seismic data and related these
stresses to a fracture criterion. Although I have made several simplify-
ing assumptions, the stresses that I estimate are nevertheless in rea-
sonable agreement with previous studies. Sergienko (2017), for
example, used the BEDMAP2 geometry from the Ross Ice Shelf but
employing an idealized wave forcing, calculated flexural stresses in
the range of 0–15 kPa. In comparison, I find a RMS and peak wave
stress on the Ross Ice Shelf of 0.8 and 17.5 kPa. The principal differ-
ences from the results of Sergienko (2017) are related topographic
focusing. I treat a simplified two-dimensional geometry where the ice
shelf is infinitely long and wide, small ice shelves of comparable
dimension to the flexural-gravity length scale are expected to signifi-

cantly deviate from the predictions made in this paper. One reason for this is that tidal stresses, for example,
become significant within a distance from the grounding line that scales with kfg (Holdsworth, 1969;
Vaughan, 1995).

6.2. Can Ocean Waves Trigger Rift Propagation?
To the best of my knowledge, no previous study has definitively demonstrated that ocean waves may trig-
ger ice shelf rift propagation. To address this situation, I have attempted in this paper to construct a simple
model of wave-induced rifting. Although I have been able to make this model behave in a manner consis-
tent with observed rift behavior, no large rift propagation event occurred during the period from which I
have data. As a result, definitive proof of ocean wave triggering remains elusive. This result emphasizes the
importance of ongoing seismological fieldwork on ice shelves (Banwell et al., 2017; Bromirski et al., 2017).
Additional fieldwork would clarify other issues as well. Although I show that a period of low wave activity
on the Ross is comparable to the Amery record, further observations are needed to confirm whether activity
on the Amery—or any other ice shelf for that matter—ever reaches stress levels as high as those observed
on the Ross.

6.3. Other Mechanisms of Episodic Rift Extension
Larour et al. (2004a), citing laboratory studies such as those by DeFranco and Dempsey (1994), invokes con-
stitutive instability as a possible mechanism for episodic rift activity. Constitutive instability gives rise, for
example, to the stick-slip instability that is responsible for basal stick-slip motion of glaciers and ice sheets
(Lipovsky & Dunham, 2016, 2017). Such behavior is a typical pathology of laboratory experiments con-
ducted on samples which are too thin to achieve a state of plane strain (Ba�zant, 1993; Broek, 2012). As dis-
cussed in section 3, ice shelf rifts are expected to occur in ice that is thick enough to be in plane strain. This
type of behavior is therefore expected to occur in thinner bodies of floating ice such as sea ice (DeFranco &
Dempsey, 1994). Furthermore, a constitutive instability hypothesis is appealing in situations such as the tec-
tonic earthquake cycle where the loading applied to a system is known to be approximately constant in
time. The finding from the present study, that wave-induced loading is highly time dependent, suggests
that constitutive instability, though possible, is not a strictly necessary condition to explain episodes of ice
shelf rift propagation.

6.4. The Fracture Toughness of Ice Shelf Suture Zones
I have chosen a value Kc 5 400 kPa

ffiffiffiffi
m
p

to represent the fracture toughness of ice shelf suture zones. This
choice is based on the best available laboratory data (Rist et al., 2002), and was chosen to be at the high
end of laboratory data to reflect the fact that suture zones appear to be more resistant to rift propagation

Figure 7. The predicted rift propagation decreases as the rift cohesive strength
increases. Satellite imagery shows less than 1 km of propagation, therefore
suggesting a cohesive strength of 6.8 kPa. The blue curve was calculated using
equations (19) and (21).
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than the surrounding ice shelf (Holland et al., 2009; Jansen et al., 2013; LeDoux et al., 2017; McGrath et al.,
2012). I also invoke the laboratory measurements to support the claim that fracture toughness variations
cannot entirely be responsible for the observed response of the Nascent Iceberg Rift to wave-induced
stresses. An important caveat to these statements is that, to my knowledge, no ice core has ever been col-
lected from an ice shelf suture zones. Fracture toughness measurements from in situ suture zone ice cores
could therefore support or refute these ideas. The exact micromechanical processes that result in the appar-
ently elevated fracture tough of ice shelf suture zones remain unknown (McGrath et al., 2014).

6.5. Cohesive Rift Strengthening
My description of rift propagation mechanics predicts that wave stresses would have caused calving of a
tabular iceberg in the absence of additional sources of rift strength. Previous studies have suggested a role
for melange dynamics as a rift strengthening mechanism (Fricker et al., 2005; Larour et al., 2004b; MacAyeal
et al., 1998; Rignot & MacAyeal, 1998). For simplicity, I have quantified this stabilizing tendency as a force
applied uniformly over the entire rift length. This rift strengthening can equivalently be thought of as a
cohesive zone (Rice, 1968). I have not attempted to quantify the spatial variation of rift strengthening; it
may be the case that rift strengthening is localized to the near-tip region (Barenblatt, 1962; Dugdale, 1960).
Near-tip localization of cohesive strength to a process-zone region (Broek, 2012) could result from the effect
of bottom crevasses forming ahead of the rift tip (Rice & Levy, 1972) or because of rift tip blunting (Larour
et al., 2004b).

6.6. Response to Melange and Ice Shelf Thinning
The rift model presented here suggests at several possible effects related to ice shelf and melange thinning.
First, the result of section 5.3 suggests that rift-filling melange may stabilize rift propagation. Reduced mel-
ange may therefore weaken ice shelves by destabilizing rift propagation (MacAyeal et al., 1998; Rignot &
MacAyeal, 1998). The wave response to thinning, in contrast, is stabilizing. Stabilization occurs for two rea-
sons. First, the flexural-gravity wavelength (equation (5)) is expected to decrease. This results in a lower
stress concentration due to flexural waves (equation (15)). Second, the flexural wave impedance is a increas-
ing function of ice thickness (Figure 3). Thus thinning of an ice shelf is expected to lower wave stresses.
Both of these stabilizing effects occur because thin ice shelves are more compliant and more compliant
structures are less susceptible to brittle fracture. Further observations, both seismic and remotely sensed,
are need to quantify whether the destabilization due to melting and warming is greater than the stabiliza-
tion due to thinning.

6.7. The Loose Tooth Rift: Stabilization Due to Propagation Into Deeper Water?
The location where the Loose Tooth T2 Rift intersects the ice front, i.e., where the rift initiated, occurs in a
part of the shelf that is above shallow water (H 5 253 m). The rift has subsequently propagated into a part
of the shelf that is above deeper water (H 5 466 m). The ice thickness at the front is similar to the ice thick-
ness at the current rift tip (h 5 265 m versus h 5 301 m). Carrying out a calculation of maximal flexural stress
similar to Figure 3, I find that waves with identical particle velocity amplitudes would induce stresses
approximately 27% higher at the ice front versus the current rift tip. Observed wave-induced stresses on
the Amery were very near the failure criterion (Figure 6b). This result suggests that the Loose Tooth T2 Rift
was more susceptible to wave-induced stresses during its initial formation in shallow water, and that propa-
gation into deeper water may have stabilized the rift tip in its current position. As noted above, this hypoth-
esis is not strictly testable because there were no seismometers deployed on the Amery during the initial
formation of the Loose Tooth T2 Rift. Future seismic deployments would therefore be useful because they
could clarify whether stabilization due to propagation into deeper water is an important process.

7. Conclusions

I propose a simple rift propagation criterion based on the observation that most ice shelf rifts show
extended periods of dormancy and therefore must have low background stress concentrations. This low
background stress concentration makes ice shelf rifts susceptible to wave-induced stresses. I infer that a
cohesive strengthening of the rift, possibly due to refrozen melange, counteracts this destabilizing ten-
dency. I relate this description of rift propagation to in situ ice shelf stresses inferred using passive seismol-
ogy. By inferring stresses associated with rift propagation, this work addresses a basic limitation in our
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understanding glacier calving physics: specifically, knowledge of the state of stress at the site of fracture
(Benn et al., 2007). This study therefore offers a detailed glimpse into the mechanics of a particular type of
glacier calving, ice shelf rift propagation.

Appendix A: Governing Equations

The propagation of ocean waves in floating ice shelves has received extensive treatment. The flexural
motions of an elastic bar were first examined by Greenhill (1886). This analysis was generalized to
extensional motions by Press and Ewing (1951, but see also literature cited therein). The main reason
that I repeat the analysis of Press and Ewing (1951) is to obtain self-consistent expressions for the parti-
cle velocities, stresses, and dispersion relations that were not explicitly given by Press and Ewing
(1951).

A1. The Elastic Ice Layer
I consider a coordinate system with the z direction being positive upward and x being positive in the direc-
tion of ice flow. An ice layer that is initially at rest and everywhere at overburden pressure occupies the
region between z 5 0 and z52h. The entire geometry is assumed to be translationally invariant in the x
direction, and I take uy5@=@y50 so that deformations are in a state of plane strain. Perturbations to this ini-
tial state obey the momentum balance equations,

q
@2ux

@t2 5
@rxx

@x
1
@rxz

@z
; (A1)

q
@2uz

@t2
5
@rxz

@z
1
@rzz

@z
; (A2)

for ice density q and stress tensor rij. Stresses are related to displacement gradients through the constitu-
tive relationship (Malvern, 1969),

rij5k
@uk

@xk

� �
dij1l

@ui

@xj
1
@uj

@xi

� �
; (A3)

where, for simplicity, elastic anisotropy is neglected. The values of elastic moduli, here written using Lam�e’s
parameter k and the shear modulus l, are given in Table 1.

Applying the transform of equation (2) to the governing equations (equations (A1–A3)) gives rise to a sys-
tem of two coupled ordinary differential equations with derivatives in z. These equations have solution
(Graff, 2012),

Ux5ik Asin az1Bcos azð Þ1ib Ccos bz2Dsin bzð Þ; (A4)

Uz5a Acos az2Bsin azð Þ1k Csin bz1Dcos bzð Þ; (A5)

where

a5k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

kcp

� �2

21

s
; (A6)

b5k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

kcs

� �2

21

s
: (A7)

Here cp and cs are the P and S wave speeds in the ice (see Table 1). The quasi-static limit occurs when x=ðk
cpÞ � 1 and x=ðkcsÞ � 1. In this case, a � b � k.

The boundary conditions at the ice-atmosphere boundary z 5 0, are

rxzðz50Þ50; (A8)

rzzðz50Þ50: (A9)

Two other boundary conditions are required, and these occur at the ice-ocean interface.
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A2. Ice-Ocean Coupling
The unperturbed ice-ocean interface is located at z52h=2. The ice-ocean boundary moves in response to
perturbations, with the deformed interface located at

z52h1/ðx; tÞ: (A10)

Consistent with a linearized theory of wave propagation, I assume that such geometric changes are small
and following standard treatments (Gill, 2016; Lipovsky & Dunham, 2015) I prescribe boundary conditions
on the undeformed interface. At this boundary, the force exerted on the ice by the water dpðx; tÞ is equal
and opposite to the force exerted by the water on the ice rzz,

rzzð2hÞ52dpðx; tÞ: (A11)

The ocean is treated as invicid so there is no shear stress,

rxzð2hÞ50: (A12)

And by continuity the velocities must match between the fluid and solid,

@uz

@t
ð2hÞ5vz; (A13)

where vz is the vertical fluid velocity. I next examine motions in the subice ocean waters with the goal of
describing the fields dp and vz (equations (A11) and (A13)) on the ice-ocean interface.

A3. Subice-Shelf Cavity Circulation
I examine the behavior of perturbations to a subice-shelf cavity initially at rest. In this initial state, the pres-
sure in the water is,

p0ðzÞ5qw gðz1hÞ1qgh: (A14)

I then define the total fluid pressure p0 to be

p0ðx; z; tÞ5pðx; z; tÞ1p0ðzÞ (A15)

Flow perturbations follow the linearized equations for an incompressible, inviscid flow with uniform density.
The horizontal and vertical momentum balance equations are

qw
@vx

@t
52

@p
@x
; (A16)

qw
@vz

@t
52

@p
@z
: (A17)

Here vx and vz are the x and z components of fluid velocity.

I assume that the ocean waters are of uniform density so that the ocean water mass conservation equation
is

@vx

@x
1
@vz

@z
50: (A18)

This statement of mass conservation may be combined with equations (A16) and (A17) with the result
being Laplace’s equation for pressure,

r2p50: (A19)

The fluid flow is irrotational as a consequence of the inviscid, uniform density, and small perturbation
assumptions (Gill, 2016, section 5.2).

The boundary condition at the ocean bottom, z52h2H, is that vertical velocities vanish,

vzðz52h2HÞ50: (A20)

At the ice-ocean interface, the water pressure perturbation is approximately equal to the hydrostatic pres-
sure at the deformed ice-ocean interface location / plus the pressure exerted by the ice on the water,
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pð2hÞ5qw g/ðx; tÞ1dpðx; tÞ: (A21)

The fluid equations (A19–A21) may be solved in the transform domain using equation (2). The result is a
transfer function between DP and surface height U,

DP5qw g
x2

gk
coth kHð Þ21

� �
U � 2Tðk;xÞU: (A22)

I again apply the convention from the main text that capital letters denote Fourier transformed quantities.

The transfer function of equation (A22), combined with the ice-ocean coupling conditions (equations (A11)
and (A13)), allows me to write the entire coupled ice-ocean problem exclusively in terms of boundary condi-
tions on the elastic solid. In equation (A22), DP and U can be eliminated in favor of the field variables Rzz

and Uz, defined in the elastic solid. The result is the bottom boundary conditions on the elastic ice layer,

Rzzðz52hÞ5Tðk;xÞUzðz52hÞ; (A23)

Rxzðz52hÞ50: (A24)

It is interesting to note that ice-ocean coupling manifests itself as the condition in equation (A23), namely,
as a Robin type boundary condition that relates the vertical elastic displacement to the vertical compressive
elastic stress.

A4. The Dispersion Relation
The four boundary conditions (equations (A8), (A9), (A23), and (A24)) on the elastic solid result in a homoge-
neous system of equations,
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(A25)

Solutions to these equations require a vanishing determinant, and this condition gives rise to the dispersion
relation,

Dðk;xÞ5DEðk;xÞDFðk;xÞ1DHDðk;xÞ50: (A26)

where
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tan ðahÞ
tan ðbhÞ1

k22b2� �2
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DE �
tan ðahÞ
tan ðbhÞ1
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The subscript HD stands for hydrodynamic. Terms with this subscript are related to flow in the subshelf
cavity.
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When ice-ocean coupling is absent, T 5 0 and so DHD 5 0. In this case, equation (A26) reduces to the Lamb
wave dispersion relation. This dispersion relation corresponds to the motions of an elastic layer with zero
stress boundary conditions (Graff, 2012). The Lamb wave dispersion relation is notable because it consists
of uncoupled flexural and extensional modes. Mathematically this uncoupling occurs because it is possible
to factor the dispersion relation into the product of two terms, DE and DF. Equation (A26) is equivalent to
equation (49) of Wang and Shen (2010) in the case of a perfectly elastic ice layer.

In general, the mechanical interaction that occurs at the ice-ocean interface results in coupling between the
flexural and extensional motions of the ice shelf. For this reason, there are no longer uncoupled flexural and
extensional modes over the entire frequency-spectra and wave number-spectra as there is in the more spe-
cific Lamb wave case. I will show in the next section, however, that for wavelengths that are long compared
to the ice thickness, a simplification to extensional and flexural modes occurs.

Appendix B: The Long Wavelength Limit

The observed seismic spectrum on the Ross and Amery Ice Shelves is dominated by wave energy at fre-
quencies lower than several seconds (Figure 4). Using the dispersion relations for extensional (equation (9))
and flexural wave motions (equation (4)), I calculate that these waves correspond to waves with wavelength
of at least several kilometers. This observation motivates a more careful examination of waves with wave-
length that are much longer than the ice shelf thickness. I calculate the Taylor series in the small parameter
kh for the dispersion relation of equation (A26),
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I have defined c � cs=cp. The resulting expression for the dispersion relation permits factorization into the
form,
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which has the property that it consists of two uncoupled modes.

The first mode, corresponding to the first curly bracketed term, is identical to the long wavelength symmet-
ric Lamb wave mode. Its phase velocity is given by equation (9).

The second mode, corresponding to the second curly bracketed term, is a modification of the long wave-
length antisymmetric Lamb wave mode. The dispersion relation for this mode is,
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Keeping only the lowest order terms in the small parameter kh gives

Dk42hqx252T ; (B6)

where D � lð12c2Þh3=3 is the flexural rigidity, which is equivalent to another commonly used expression,
Eh3=½12ð12m2Þ�.
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I have not yet made use of the ice-ocean transfer function. The results in this section up to this point are
therefore valid for any ice-ocean transfer function T. Using the transfer function T from equation (A22) then
gives the dispersion equation of equation (4).

Appendix C: Wave Particle Motions

I calculate particle motions by regrouping the general solution (equations (A4) and (A5)) into symmetric
and antisymmetric terms. In order to highlight symmetries about the midplane of the ice layer, I define the
coordinate z0 � z2h=2. The ice-atmosphere and ice-ocean surfaces are then located at z056h. These terms
correspond to extensional and flexural motions, respectively,
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The ratios D/A and B/C are defined from the zero shear stress boundary conditions at z056h=2, as
expressed in the second and fourth lines of the matrix in equation (A25),
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The other boundary conditions enter through the requirement that k and x be related by the dispersion
relation. In the long wavelength limit, B=C � D=A � 2i. The equations for particle motion (equations (C1–
C6)), combined with the elastic constitutive relation (equation (A3)), suffice to calculate the impedance ten-
sor of equation (1).

Extensional waves have particle motions,
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I note that the long wavelength limit kh� 1 is distinct from the quasi-static limit where x=ðkcpÞ � 1. In other
words, long wavelength extensional waves are not quasi-static. The long wavelength extensional mode has
dominantly horizontal displacements jUE

x j=jUE
z j 	 ðkz0Þ21 that are constant throughout the ice layer. The

much smaller vertical displacements, in contrast, are antisymmetric about the midplane of the ice layer.

Flexural motions have phase velocity given by equation (4). The particle motions satisfy,

UF
x

A
� 2

k2x2z0

2c2
(C9)

UF
z

A
� 2

ikx2

2c2
(C10)

Unlike the extensional mode, the flexural mode long wavelength limit is also quasi-static. The long wave-
length flexural mode has dominantly vertical displacements jUF

z j=jUF
x j 	 ðkzÞ21 that are constant through-

out the ice layer. The much smaller horizontal displacements, in contrast, are antisymmetric about the
midplane of the ice layer.
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